Fuzzy interaction regression for short term load forecasting

نویسندگان

  • Tao Hong
  • Pu Wang
چکیده

Electric load forecasting is a fundamental business process and well-established analytical problem in the utility industry. Due to various characteristics of electricity demand series and the business needs, electric load forecasting is a classical textbook example and popular application field in the forecasting community. During the past 30 plus years, many statistical and artificial intelligence techniques have been applied to short term load forecasting (STLF) with varying degrees of success. Although fuzzy regression has been tried for STLF for about a decade, most research work is still focused at the theoretical level, leaving little value for practical applications. A primary reason is that inadequate attention has been paid to the improvement of the underlying linear model. This application-oriented paper proposes a fuzzy interaction regression approach to STLF. Through comparisons to three models (two fuzzy regression models and one multiple linear regression model) without interaction effects, the proposed approach shows superior performance over its counterparts. This paper also offers critical comments to a notable but questionable paper in this field. Finally, tips for practicing forecasting using fuzzy regression are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Load Forecasting Using Multi Parameter Regression

Short Term Load forecasting in this paper uses input data dependent on parameters such as load for current hour and previous two hours, temperature for current hour and previous two hours, wind for current hour and previous two hours, cloud for current hour and previous two hours. Forecasting will be of load demand for coming hour based on input parameters at that hour. In this paper we are usi...

متن کامل

Multi Pronged Approach for Short Term Load Forecasting

Short term load forecasting can be made effective and closer to actual demand by applying the suggested multi pronged approach of genetic, fuzzy and statistical method as discussed in this paper. Taking the advantages of global search abilities of evolutionary computing as well as expert inference based on statistical aspects, load forecasting can be made nearly error free. The results were com...

متن کامل

Short Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression

The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...

متن کامل

Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network

The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...

متن کامل

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FO & DM

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014